## Friday, August 31, 2018

### Probability of Ruin in Pictures

William Bengen calculated sustainable withdrawal rates (SWR) using historical S&P500 market returns since 1928 leading to the “4% Rule.”[1] More recently, Robert Shiller published stock market  returns data back to 1871 using the S&P Composite Index[2]. In this post, I’ll explore the “probability of ruin” using the more extensive Shiller data.

Probability of ruin is typically used in retirement planning to estimate the probability that a retiree will outlive her portfolio based on some set of assumptions such as a fixed planning horizon (often 30 years), market return expectations and a constant-dollar spending strategy.  Bengen studied rolling 10-, 20- and 30-year retirements using historical S&P500 market returns and a constant-dollar spending strategy[3].

He found that assuming a fixed 30-year retirement and annual withdrawals of 4% of the retiree’s portfolio value at retirement the worst-case historical scenario (someone retiring for 30 years beginning in 1966) would have depleted a portfolio in less than 30 years for about 5% of the rolling periods. Hence, the “4% Rule.”

The following chart shows the terminal portfolio value (TPV) after 30 years for a retiree spending \$42,000 (4.2%)  annually from an initial portfolio valued at \$1M for 110 overlapping thirty-year periods from 1872 to 1982. (Shiller’s data ends in 2012 so the last 30-year period began in 1982.) The red bars indicate years of retirement that funded less than 30 years.

(Click on the charts to zoom in.)

Six of the 110 periods (5.5%, the historical “probability of ruin”) were depleted in fewer than 30 years. TPV charts typically and reasonably assume a retiree’s portfolio can’t drop below zero but I continued withdrawals for the full 30 years to show the extent to which they failed. Another way to read this is that the deeper the red column, the sooner the portfolio was depleted.

Take a longing glance at those tall columns, the ones with really large terminal portfolio values. Then, compare them to the little stubby blue guys. Both are probability of ruin “successes”.

Probability of ruin assumes that you’ll be happy simply not retiring in one of those red years. You’re either in the 5% of scenarios that start a losing period or the 95% of winners and so as long as your bar turns out blue, you’re good, right?

Not really. Wouldn’t you be at least a little happier with a tall blue bar than a short, stubby blue bar, even though both avoid portfolio depletion? I would. Probability of ruin assumes that you’ll be just as happy successfully funding retirement and leaving a hundred bucks to your heirs as you would be leaving them a million. And, that you’d be as dissatisfied with a portfolio that funds 29 years as with one that only funds 15.

I wouldn’t. If a planner said, “Hey, great news! Your retirement is funded 95% of the time”, my response would be, “That sounds great but how well does it turn out when it is completely funded and how badly when it isn’t?”

Sequence risk affects all outcomes, sometimes positively and sometimes negatively. Probability of ruin flags only the worst outcomes. Probability of ruin is sort of an upside-down “tip of the iceberg” in that most of the information is hidden from view by condensing all that information into a single data point, the percentage of failures.

(For a better iceberg effect, turn your phone upside down while you view the chart below. If you’re reading this on an iMac or PC, probably better to just use your imagination.)

In Figure 2 below, I increased spending from 4.2% of initial portfolio value to 4.75% which, of course, creates more red bars indicating more depleted portfolios.

Note that the red bars appear in four distinct clusters in both Figures 1 and 2. A “95% probability of ruin” might suggest that ruin appears sporadically about every 20 years (5% of periods). It does not, although that is how sequence risk is most often (incorrectly) modeled.

When I increase spending to 5.5%, the result is even more red bars, as expected, but they’re still all within those four clusters. Ruin isn’t a uniformly-distributed event. Probability of ruin is quite high in certain periods of economic distress but relatively low any other time.

Here's an analogy. Kentucky averages about 12 snowfall days per year but we don’t predict snowfall in July. It’s more likely to snow in winter in Kentucky and high sequence risk is more likely to deplete a portfolio when spending starts in an "economic winter". Many models of sequence risk predict snow in July.

Unless you retired just prior to the Panic of 1910, the Great Depression, a bad 1937 bear market (squeezed between two really good market years, by the way) or during the inflationary 1965 to 1975 period, the 4% Rule would not have depleted your portfolio. Unfortunately, these periods are not predictable. The jury is still out on the 2000s.

Probability of ruin in pictures via @Retirement_Cafe.
[Tweet this]

In the next chart, Figure 3, the y-axis scale changes from \$M to \$K so we can better see the near misses. I arbitrarily set the definition of success in this test to include TPVs greater than \$150,0000 and the definition of failures to include TPVs worse than -\$150,000. My reasoning is that given the margin of error in a 30-year retirement plan these scenarios might have gone either way IRL (in real life, as Millennials say). This is arbitrary but so is drawing the failure line at precisely zero dollars and this definition factors in more of the uncertainty of the analysis.

Note the number of portfolios that barely avoided depletion (3) and the number that very nearly avoided depletion (2). If we omit these five scenarios from the calculation because they are too close to call, the probability of ruin becomes 3.8% instead of 5.5%. That’s more than a 30% change in the estimate of ruin and represents a big change in sustainable spending.

I'm not advocating ignoring these data but simply viewing them in three categories instead of two: probably succeeded, probably failed and too-close-to-call, based on our degree of confidence in the outcomes.

When you have only a few failures, a few close calls make a large difference in probability of ruin.  Portfolio’s that come up just a little short probably aren’t losers and a small bequest left to heirs is probably too close to call a winner, as well. Thinking we can predict a 30-year retirement much more accurately than plus or minus a few years is overconfidence.

Why do I question “near misses”? Because they probably would have funded most of the 30 years. Only 6% of men and 13% of women aged 65 live another 30 years and all of those who died sooner would have successfully funded their retirements in these scenarios.

The following chart, Figure 4, brings bear markets (the yellow bars) into the picture.

Retirees are often told that retiring into a bear market is deadly, but bear markets don’t appear to be particularly highly correlated with failing portfolio periods. Robert Shiller doesn’t even consider the 1960’s and 1970’s to be bear markets because they were so gradual[4]. Paint those bars blue and the correlation of bear markets to portfolio ruin is even less obvious.

If portfolio depletion isn’t necessarily caused by bear markets, what does cause it? The EarlyRetirementNow.com website found that the sustainable withdrawal rate is nearly completely explained by portfolio returns for the first five and first ten years of 30-year periods.[5] This explains SWR but not ruin — portfolio depletion is completely explained by sequence risk.

Nonetheless, a chart of SWRs is informative. Figure 5 shows the SWRs that would have depleted a portfolio in precisely 30 years from 1872 to 1982.

This is the view of the iceberg below the surface. Sustainable withdrawal rates that deplete portfolios in precisely 30 years are unpredictable and vary widely from 3.8% to 12.6% historically.

Figure 5 above provides a visual explanation of the “4% Rule” probabilist school of retirement finance. That approach recommends spending the amount that would only fail in no more than 5% of retirement periods. Using the Shiller data, that amount of spending would be about 4.2% of initial portfolio value.

There are two potential risks with this strategy. The obvious one is that you might fall into the unlucky 5% (one in twenty) and outlive your savings but an equally important concern is that you would almost always underspend. All of the blue bars above the red line represent underspending. You would have spent 4.2% if you retired in 1950, planning to live 30 years, for example, when you could have spent 11.8%. Of course, you couldn’t have known that in 1950.

Some planners have suggested that sequence risk goes away after 10 years. Alas, it does not. The following chart shows the value of portfolios at the end of the first 10 years for historical data.

The smallest TPV after 10 years was \$340,000 (retirement in 1973) and the largest was \$3.8M (1949). Surely the latter has less sequence risk ten years into retirement.

If both scenarios are assumed to complete the remaining 20 years of a 30-year retirement and both continue to spend the \$42,000 they calculated as sustainable back in year one, the larger portfolio would have survived all rolling 20-year historical periods with continued annual spending of 1.1% (42,000 / 3,800,000), while the smaller portfolio would have failed nearly all of those periods with 12.4% annual spending (42,000 / 340,000).

Sequence risk might appear to go away after 10 years from the perspective of the start of a 30-year period but after 10 years much will have changed. Sequence risk will change accordingly and become greater or smaller. We can’t know which.

As I mentioned above, the EarlyRetirementNow blog found that the returns for the first 5 years of a 30-year retirement best explain the sustainable withdrawal rate.  Figure 7a shows 5-year annualized market growth rates with the same time period on the x-axis. The panel below, Figure 7b, shows 30-year TPV with portfolio failures in red in the top chart. Note how well very low growth rates for the next five years align with portfolio depletion.[6]

Portfolio failures are caused by poor market returns early in a series of returns. The low returns can result from a quick, precipitous shock like The Crash of October 1929, from a single terrible year of returns like 1937, or from a long, gradual sideways series of mediocre real returns like 1966 to 1975.

These growth rates are explanatory, not predictive. In these charts we are explaining the past, not predicting the future. We have no idea what the next five years of market returns will bring but we can see that low early returns — sequence risk — are not a good way to start.

To summarize, probability of ruin is an interesting rule of thumb with severe limitations. Sequence risk affects all portfolios from which the retiree periodically spends but probability of ruin only measures the extreme outcomes, those that result in premature portfolio depletion. It treats all failures alike and all success alike, ignoring the extent of the success or failure. The thin line separating success from failure is arbitrary. It hides the extent of success and the extent of failure.

Portfolio ruin isn’t sporadic and doesn’t uniformly occur once every 20 years or so as a 5% failure rate might imply. Most of the time, sequence risk is quite low but during major economic upheavals, it occurs in bouts.

Models of probability of ruin are not robust. They provide a significantly different answer every time they are run even when nothing changes except the Monte Carlo random number draw.

Probability of ruin is based on some strange assumptions about human behavior, like assuming we will continue to spend the same amount when ruin becomes apparent or that we don’t care how much wealth we have as long as it’s more than zero. It’s also based on less than five unique sequences of 30-year historical returns, a truly small sample.

Put all this together and probability of ruin looks like a very poor metric by which to predict, model, or manage retirement finances.

REFERENCES

[2] Annual Data on US Stock Market, Robert. J. Shiller.

[3] This analysis uses the S&P Composite Index, data from 1871 to 2012, and 100% equity allocation.

[5] The Ultimate Guide to Safe Withdrawal Rates – Part 15Early Retirement Now blog.

[6] The market grew about 0% from 1927 to 1931 as shown in the bottom panel, for example, and portfolios with spending beginning in 1927 failed sooner than 30 years with 4.75% spending, as the top chart shows.

## Saturday, August 11, 2018

### The Critical Factors of Portfolio Ruin Aren't Predictable

Probability of ruin and sequence of returns risk are probably the most widely-discussed topics in all of retirement finance and perhaps the least understood.

Probability of ruin is not sequence of returns (SOR) risk. The sequence of portfolio returns we experience after retiring is one determinant of premature portfolio depletion (ruin) but so are life expectancy, the market returns, themselves, the volatility of those returns, the amount we choose to periodically spend and the value of our portfolio.

For a given sequence of returns, the probability of prematurely depleting our savings increases if we expect to live longer or spend more, start out with a smaller portfolio, receive better average market returns or experience less volatility of those returns. As I will explain below, some of these factors have a significantly larger impact on expected terminal (end-of-retirement) wealth than others.

The fact that some of those key variables, our life expectancy and the size of our portfolio, invariably change as we age tells us that probability of ruin also changes as a result of aging. The amount we need to spend annually might also change over time, as might our expectations of future portfolio returns and these will also alter our updated estimate of probability of ruin.

But, the size of our portfolio and our life expectancy are certain to change as we age. They are critical factors of portfolio survival and I suspect nearly everyone would agree that he or she can't know how much money will be left in the retirement-funding portfolio in 10 or 20 years or whether he or she will live that long.

This should dispel the notion some have that a 95% probability of success at the beginning of retirement remains 95% throughout retirement. It probably changes the next year, perhaps meaningfully. That also means that spending 4% of initial portfolio value could become far riskier or far less risky as we age.

“Sequence risk” is introduced when we periodically spend from or invest in a volatile portfolio of stocks and bonds. If we plan to sell stocks every year for the next 30 years, we have no idea today what the selling price will be when those 30 times arrive. That uncertainty of future selling prices creates sequence risk.

Notice I said, “or invest in a volatile portfolio.” When we are accumulating a retirement portfolio with periodic stock purchases before retiring, we don’t know future purchase prices today, either, and that uncertainty also creates sequence risk.

The best way to see the cause of sequence risk is to look at what happens when it isn’t present. Any given thirty years of market returns, for example, will result in the same terminal portfolio value for a buy-and-hold strategy regardless of the order of those returns.

Imagine three years of portfolio returns of 10%, -7% and 12%. These equate to growth rates of 1.1, 0.93 and 1.12, respectively. Multiply those in any order and you get a three-year growth factor or 1.146.  One dollar invested returns \$1.15 after three years. The sequence of the returns doesn’t matter.

When you add (save) or subtract (spend) numbers from each of those years, however, no matter where those numbers come from (constant-dollar spending, constant-percentage spending or whatever) the order of the sequence does matter. This is sequence risk. We see sequence risk when we periodically spend from or invest in a volatile portfolio. We see no sequence risk with a buy-and-hold portfolio, so the sequence risk comes from either periodic savings or periodic withdrawals.

The critical factors of portfolio ruin aren't predictable.
[Tweet this]

This periodic spending, if too large, can result in depleting our portfolio after retirement, so we are exposed to both sequence risk and a “risk of ruin.” Losing 100% of a savings portfolio, however, is extremely unlikely and while we save for retirement we have sequence risk but almost zero probability of ruin.

So, probability of ruin and sequence risk aren’t the same thing. A poor sequence of returns combined with unsustainable spending can lead to ruin after retirement but a good sequence of returns decreases probability of ruin given the same average return.

The cost of sequence risk is lost compounding of returns. When we have a losing year with a buy-and-hold portfolio, we lose money. When we spend from a volatile portfolio we also lose money during that same losing-market year but our portfolio balance further loses the money we spend plus all potential future compounded gains on the amounts we sold.

Losses hurt more when we spend from a volatile investment portfolio than when we buy and hold. This is why it takes longer for a spending portfolio to recover from a bear market than it takes a buy-and-hold or accumulation portfolio.

(It is often noted that the market recovered fairly quickly after the Great Depression when dividends are considered. A buy-and-hold portfolio would have, too. An accumulation portfolio would have recovered even faster as cheap stocks were subsequently purchased. But, a retiree's spending portfolio would have recovered much more slowly, assuming the portfolio had survived, of course.)

Losses early in retirement hurt more than later losses because those earlier losses leave less capital to compound over time. As Michael Kitces has explained, good returns late in retirement aren't helpful if your portfolio doesn't survive long enough to see them.

The best possible sequence of your annual portfolio returns would result if those returns happened to materialize ordered from best annual return in the first year to worst return in the last. The opposite order would be the worst. That’s why we’re warned that significant portfolio losses early in retirement are the most severe.

Of course, we have no control over the sequence of returns we receive nor can we predict the sequence.

Sequence risk never completely goes away. It is present in a 30-year retirement (and greater in the early years) and it is present in a 5-year retirement (and greater in the early years). Note that a 30-year retirement will eventually become a 5-year retirement if we live long enough.

The challenge of savings decumulation is to optimally spread one's portfolio over one's remaining lifetime but a healthy individual's lifetime is unpredictable. Will sequence risk be reduced when a 60-year old reaches 85? That depends on how much longer the 85-year old will live, how much of her wealth remains and how much she will spend. It requires a new calculation of safe spending based on these new variable values.

A reduced range of life expectancy reduces that component of risk compared to 25 years earlier. However, the amount of wealth we will have 25 years into the future is wildly uncertain. If the retiree's portfolio performs well, she may reach age 85 with reduced probability of ruin compared to age 65 because she has greater wealth and fewer years to spread it over. If her portfolio performs poorly, however, she may reach age 85 with fewer years to fund but far less wealth to fund them and, therefore, increased probability of ruin.

Many SWR analyses suggest that risk decreases because the safe withdrawal percentage increases as we age. Those analyses estimate a safe withdrawal rate when a retiree experiences a 30-year retirement beginning with initial savings of say, a million dollars, and an SWR for a 10-year retirement beginning with the same million dollars.

Risk then appears to decrease with age because the analysis assumes the retiree will have the same million dollars with 10 years remaining as he had with 30 years remaining.  But, in real life there is no guarantee that the retiree will still have a million dollars after 20 years.

An SWR model of historical market returns since 1928 with 4% spending produced a maximum TPV after 20 years of \$10.8M and a minimum non-zero TPV of \$106K. With continued 4% spending, the former scenario would clearly have a far lower probability of ruin than the latter after 20 years. Add the risk of future portfolio value back into the mix and sequence risk doesn't diminish.

Said differently, the percentage of your remaining portfolio that can be safely spent increases as you age because your life expectancy decreases. The problem is knowing "the percentage of what?" Spending 7% of \$106K isn't better than spending 7% of \$10.8M even though 7% is larger than 4%.

Probability of ruin doesn't always decline with time but it does change as our savings balance and our remaining life expectancy change. We need to recalculate periodically.

We can estimate a terminal portfolio value (TPV), say after 30 years, for a given sequence of returns and we can estimate how often that will deplete the portfolio in less than 30 years (probability of ruin). These are two different measures. TPV says, "you might have this much money left at the end of retirement", while probability of ruin tells us the likelihood that amount will be more than zero.

The EarlyRetirementNow blog[1] estimates the impact of sequence of returns on the sustainable withdrawal rate* and summarizes its findings: "Precisely what I mean by SRR matters more than average returns: 31% of the fit is explained by the average return, an additional 64% is explained by the sequence of returns!"

However, the sequence of returns explains 100% of portfolio ruin. To illustrate, we can take a series of portfolio returns that result in premature portfolio depletion (ruin) and rearrange those exact same returns in a better way that avoids premature depletion. We simply swap some of the poor early returns with better late returns. As I explained above, doing so doesn't change the average portfolio return we would receive but it does increase the resulting terminal portfolio value. The difference between success and failure is the sequence, not the returns, themselves.

Focussing on portfolio ruin, however, can be misleading. Sequence risk can dramatically decrease consumption (standard of living) in retirement without resulting in portfolio depletion. (This happens when you end retirement with a small portfolio value that is greater than zero.)

As Jason Scott told me years ago, probability of ruin treats a scenario that successfully funds 29 years as a failure and a scenario that successfully funds 50 years of retirement as no better an outcome than one that funds 30 years. I would add that for a retiree who lives less than 30 years, all three scenarios are winners. It's important to also model life expectancy.

Readers often comment that variable-spending strategies eliminate sequence risk. They don't but they can lower the probability of portfolio depletion by not foolishly spending the same fixed amount annually when savings dwindle. Reducing the chances of depleting the portfolio, however, comes at the expense of lower spending.

Think of it this way: a poor sequence of returns reduces our wealth. We can ignore that reduced wealth and keep spending the same constant amount, risking portfolio depletion, or we can spend less (variably) when our savings are stressed. Either way, we have less wealth so variable spending didn't eliminate the consequences of a poor sequence of returns. It simply changed the impact of sequence risk from portfolio depletion to a lower standard of living.

There is a problem with variable spending strategies, though I still consider them vastly superior to mindless constant-dollar strategies. There is no guarantee that the varying amount you can safely spend every year will maintain your standard of living.

If I am stranded on a desert island with a limited water supply, I can choose to drink decreasing amounts as the supply dwindles but at some point, I can't drink less and survive. Likewise, when variable "safe" spending drops below non-discretionary spending for a sustained period I still have to buy food and pay the mortgage even if that entails an "unsafe" level of portfolio spending. Variable spending isn't a flawless strategy but it seems more sound than the alternative.

I mentioned that the sequence of your future portfolio returns can’t be predicted but the risk can be mitigated. We can do this by spending less from the portfolio, for example, or by changing bond-equity allocations. Sequence risk is moderated by safety-first advocates by ensuring an acceptable income from assets not exposed to market risk in the event of portfolio failure.

To summarize some key characteristics of sequence risk:
• The sequence of future returns is critical for the survivability of a spending portfolio — but unknowable.
• Sequence risk and the "safe" amount we can spend vary throughout retirement. They can become much safer or much riskier. We need to modify the amount of portfolio withdrawals to compensate — if we can.
• Sequence risk can be helpful or harmful and it has different impacts (generally better) during the accumulation phase than after retirement.
• Sequence risk can result in portfolio depletion (ruin) or lowered standard of living after retirement but probably not before.
• The sequence of returns matters more than average returns. To avoid premature portfolio depletion you need a fortunate sequence of portfolio returns about twice as badly as you need really good returns.
• Althought we can't predict or control our sequence of future portfolio returns, the risk it introduces can be mitigated in various ways.
• Sequence of returns explains most of sustainable withdrawal rate and all of portfolio ruin.
• The portfolio return of the first five and ten years of a 30-year retirement are much better predictors of a sustainable withdrawal rate than the mean return for 30 years.[1] You can experience good average returns for thirty years and see your portfolio fall to a poor sequence of those returns or experience mediocre average returns and be saved by a good sequence.
• A terrible bear market isn't required to sink a retirement portfolio. To quote Michael Kitces, "a “merely mediocre” decade of returns can actually be worse than a short-term market crash..."[2] Retiring in the 1960's was a perfect example. Retiring around the beginning of the Great Depression offers a similar example of how a shorter period of dramatic losses can also result in portfolio failure.
• Sequence risk never goes away but it can become quite small if your wealth is (or becomes) very large relative to your spending needs and remaining life expectancy — in other words, when your portfolio performs well throughout retirement. Sequence risk can become quite high under the opposite circumstances.
The key takeaways are that the sequence of the returns your retirement portfolio experiences is a major determinant of portfolio survival and is about twice as important as your mean portfolio return. The most important factor is how long you will be retired. And, neither of these is predictable for an individual household.

EarlyRetirementNow's analysis calculates the safe withdrawal rate that would deplete the portfolio in exactly 30 years.

## REFERENCES

[1] The Ultimate Guide to Safe Withdrawal Rates – Part 15, Early Retirement Now blog.

[2] Understanding Sequence Of Return Risk – Safe Withdrawal Rates, Bear Market Crashes, And Bad Decades, Michael Kitces, Nerd's Eye View blog.